banner

Diagonalize the following matrix. The real eigenvalues are given to the right of the matrix.

\[ \boldsymbol{ \left [ \begin{array}{ c c c } 2 & 5 & 5 \\ 5 & 2 & 5 \\ 5 & 5 & 2 \end{array} \right ] \ ; \ \lambda \ = \ 12 } \]

The aim of this question is to understand the diagonalization process of a given matrix at given eigenvalues.

To solve this question, we first evaluate the expression $ \boldsymbol{ A \ – \ \lambda I } $. Then we solve the system $ \boldsymbol{ ( A \ – \ \lambda I ) \vec{x}\ = 0  } $ to find the eigen vectors.

Expert Answer

Given that:

\[ A \ = \ \left [ \begin{array}{ c c c } 2 & 5 & 5 \\ 5 & 2 & 5 \\ 5 & 5 & 2 \end{array} \right ] \]

And:

\[ \lambda \ = \text{ Eigen Values } \]

For $ \lambda \ = \ 12 $:

\[ A \ – \ \lambda I \ = \ \left [ \begin{array}{ c c c } 2 & 5 & 5 \\ 5 & 2 & 5 \\ 5 & 5 & 2 \end{array} \right ] \ – \ 12 \ \left [ \begin{array}{ c c c } 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right ] \]

\[ A \ – \ \lambda I \ = \ \left [ \begin{array}{ c c c } 2 \ – \ 12 & 5 & 5 \\ 5 & 2 \ – \ 12 & 5 \\ 5 & 5 & 2 \ – \ 12 \end{array} \right ] \]

\[ A \ – \ \lambda I \ = \ \left [ \begin{array}{ c c c } -10 & 5 & 5 \\ 5 & -10 & 5 \\ 5 & 5 & -10 \end{array} \right ] \]

Converting to row echelon form through row operations:

\[ \begin{array}{ c } R_2 = 2R_2 + R_1 \\ \longrightarrow \\ R_3 = 2R_3+R_1 \end{array} \left [ \begin{array}{ c c c } -10 & 5 & 5 \\ 0 & -15 & 15 \\ 0 & 15 & -15 \end{array} \right ] \]

\[ \begin{array}{ c } R_1 = R_1 + \frac{ R_2 }{ 3 } \\ \longrightarrow \\ R_3 = R_2 + R_3 \end{array} \left [ \begin{array}{ c c c } -10 & 0 & 10 \\ 0 & -15 & 15 \\ 0 & 0 & 0 \end{array} \right ] \]

\[ \begin{array}{ c } R_1 = \frac{ -R_1 }{ 10 } \\ \longrightarrow \\ R_2 = \frac{ -R_2 }{ 3 } \end{array} \left [ \begin{array}{ c c c } 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array} \right ] \]

So:

\[ A \ – \ \lambda I \ = \ \left [ \begin{array}{ c c c } 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array} \right ] \]

To find the eigenvectors:

\[ ( A \ – \ \lambda I ) \vec{x}\ = 0 \]

Substituting Values:

\[ \left [ \begin{array}{ c c c } 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array} \right ] \ \left [ \begin{array}{ c } x_1 \\ x_2 \\ x_3 \end{array} \right ] \ = \ 0 \]

Solving this simple system yields:

\[ \vec{x} \ = \ \left [ \begin{array}{ c } 1 \\ 1 \\ 1 \end{array} \right ] \]

Numerical Result

\[ A \ – \ \lambda I \ = \ \left [ \begin{array}{ c c c } 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array} \right ] \]

\[ \vec{x} \ = \ \left [ \begin{array}{ c } 1 \\ 1 \\ 1 \end{array} \right ] \]

Example

Diagonalize the same matrix given in the above question for $ lambda \ = \ -3 $:

For $ \lambda \ = \ -3 $:

\[ A \ – \ \lambda I \ = \ \left [ \begin{array}{ c c c } 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{array} \right ] \]

Converting to row echelon form through row operations:

\[ \begin{array}{ c } R_2 = R_2 – R_1 \\ \longrightarrow \\ R_3 = R_3 – R_1 \end{array} \left [ \begin{array}{ c c c } 5 & 5 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right ] \]

\[ \begin{array}{ c } R_1 = \frac{ R_1 }{ 5 } \\ \longrightarrow \end{array} \left [ \begin{array}{ c c c } 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right ] \]

So:

\[ A \ – \ \lambda I \ = \ \left [ \begin{array}{ c c c } 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right ] \]

5/5 - (17 votes)