 # Square Root of 600 + Solution With Free Steps In this article, we will learn to find the square root of a three-digit number that is 600, we can represent it as √600 which is equal to 24.49. This article contains two different methods to solve the square root of 600. Later on in the article, you will also find out whether it Is a perfect square or not.

In this article, we will analyze and find the square root of 600 using various mathematical techniques, such as the approximation method and the long division method.

## What Is the Square Root Of 600?

The square root of the number 600 is 24.49.

The square root can be defined as the quantity that can be doubled to produce the square of that similar quantity. In simple words, it can be explained as:

√600 = √(24.49 x 24.49)

√600 = √(24.49)$^2$

√600 = ±24.49

The square can be canceled with the square root as it is equivalent to 1/2; therefore, obtaining 24.49. Hence 24.49 is 600’s square root. The square root generates both positive and negative integers.

## How To Calculate the Square Root of 600?

You can calculate the square root of 600 using any of two vastly used techniques in mathematics; one is the Approximation technique, and the other is the Long Division method.

The symbol √ is interpreted as 600 raised to the power 1/2. So any number, when multiplied by itself, produces its square, and when the square root of any squared number is taken, it produces the actual number.

Let us discuss each of them to understand the concepts better.

### Square Root of 600 by Long Division Method

The process of long division is one of the most common methods used to find the square roots of a given number. It is easy to comprehend and provides more reliable and accurate answers. The long division method reduces a multi-digit number to its equal parts.

Learning how to find the square root of a number is easy with the long division method. All you need are five primary operations- divide, multiply, subtract, bring down or raise, then repeat.

Following are the simple steps that must be followed to find the square root of 600 using the long division method:

### Step 1

First, write the given number 600 in the division symbol, as shown in figure 1.

### Step 2

Starting from the right side of the number, divide the number 600 into pairs such as 00 and 6.

### Step 3

Now divide the digit 6 by a number, giving a number either 6 or less than 6. Therefore, in this case, the remainder is 2, whereas the quotient is 2.

### Step 4

After this, bring down the next pair 00. Now the dividend is 200. To find the next divisor, we need to double our quotient obtained before. Doubling 2 gives 4; hence consider it as the next divisor.

### Step 5

Now pair 4 with another number to make a new divisor that results in $\leq$ 200 when multiplied with the divisor. If the number is not a perfect square, add pair of zeros to the right of the number before starting division.

### Step 6

Adding 4 to the divisor and multiplying 44 with 4 results in 176 $\leq$ 200. The remainder obtained is 24. Move the next pair of zeros down and repeat the same process mentioned above.

### Step 7

Keep on repeating the same steps till the zero remainder is obtained or if the division process continues infinitely, solve to two decimal places.

### Step 8

The resulting quotient 24.49 is the square root of 600. Figure 1 given below shows the long division process in detail: ### Square Root by Approximation Method

The approximation method involves guessing the square root of the non-perfect square number by dividing it by the perfect square lesser or greater than that number and taking the average.

The given detailed steps must be followed to find the square root of 600 using the approximation technique.

### Step 1

Consider a perfect square number 576 less than 600.

### Step 2

Now divide 600 by √576 .

600 ÷ 24 = 25

### Step 3

Now take the average of 25 and 24. The resulting number is approximately equivalent to the square root of 600.

(25 + 24) ÷ 2 = 24.5

### Important points

• The number 600 is not a perfect square.
• The number 600 is a rational number.
• The number 600 can be split into its prime factorization.

## Is Square Root of 600 a Perfect Square?

The number 600 is not a perfect square. A number is a perfect square if it splits into two equal parts or identical whole numbers. If a number is a perfect square, it is also rational.

A number expressed in p/q form is called a rational number. All the natural numbers are rational. A square root of a perfect square is a whole number; therefore, a perfect square is a rational number.

A number that is not a perfect square is irrational as it is a decimal number. As far as 600 is concerned, it is not a perfect square. It can be proved as below:

Factorization of 600 results in 25 x 24.

Taking the square root of the above expression gives:

= √(24 x 25)

= (24 x 25)$^{1/2}$

= 24.49

This shows that 600 is not a perfect square as it has decimal places; hence it is an irrational number.

Therefore the above discussion proves that the square root of 600 is equivalent to 24.49. Images/mathematical drawings are created with GeoGebra.