$21\: 49\: 54\: 63\: 54\: 35\: 52\: 45\: 88\: 65\: 64\: 51\: 41\: 34\: 49\: 78\: 31\: 40\: 51\: 70\: 78\: 60\: 74\: 55\: 29\: 66\: 59\: 32\: 68\: 56$
Bin Frequency $20-29 \:30-39\: 40-49\: 50-59\: 60-69\: 70-79\: 80-89$
This article aims to find the frequency distribution table of the given data. This article uses the background concept of a frequency distribution table. A frequency distribution table is way to organize data to make it more meaningful.
A frequency distribution table is a graph that summarizes all the data into two columns – variables/categories and their frequency. It has two or three columns. Typically, the first column lists all results as individual values or class intervals depending on the data set size. The second column contains the sum of individual results. The third column lists frequency of each effect. The second column is also optional.
Expert Answer
Step 1
To write the frequency distribution for the data, write the number of values that belong to each interval.
The interval $20-29$ contains two values $ 21 $ and $ 29 $.
The interval $30-39$ contains the four values $ 35 $, $ 34 $, $ 31 $, $ 32 $.
The interval $40-49$ contains five values $ 49 $, $ 45 $, $ 41 $, $ 49 $, $ 40 $.
The interval $50-59$ contains eight values $ 54 $, $ 54 $, $ 52 $, $ 51 $, $ 51 $, $ 55 $, $ 59 $, $ 56 $.
The interval $60-69$ contains six values $ 63 $, $ 65 $, $ 64 $, $ 60 $,$ 66 $, $ 68 $.
The interval $70-79$ contains the four values $ 78 $, $ 70 $, $ 78 $, $ 74 $.
The interval $80-89$ contains one value of $ 88 $.
Step 2
So, we get the following frequency distribution of the given data .
Numerical Results
The frequency distribution table for the given data is:
Example
The following figures represent the ages of $25$ lottery winners. $ 21 $ $ 31 $ $ 49 $ $ 70 $ $ 88 $ $ 45 $ $ 41 $ $ 49 $ $ 40 $ $ 54 $ $ 59 $ $ 55 $ $ 54 $ $ 52 $ $ 51 $ $ 63 $ $ 65 $ $ 64 $ $ 60 $ $ 66 $ $ 68 $ $ 78 $ $ 29 $ $ 35 $ $ 34 $. Complete frequency distribution for the data. Bin Frequency $20-29$ $30-39$ $40-49$ $50-59$ $60-69$ $70-79$ $80-89$.
Solution
Step 1
To write the frequency distribution for the data, write the number of values that belong to each interval.
The interval $20-29$ contains two values $21$ and $29$.
The interval $30-39$ contains the three values $35$, $34$, $31$.
The interval $40-49$ contains five values $49$, $45$, $41$, $49$, $40$.
The interval $50-59$ contains six values $ 54 $, $ 54 $, $ 52 $, $ 51 $, $ 55 $, $ 59 $.
The interval $60-69$ contains six values $ 63 $, $ 65 $, $ 64 $, $ 60 $,$ 66 $, $ 68 $.
The interval $70-79$ contains the two values $ 78 $, $ 70 $.
The interval $80-89$ contains one value of $ 88 $.
Step 2
We get the following frequency distribution of the given data.