\[ 1 + 2t^3, 2 + t – 3t^2, -t + 2t^2 – t^3\]

This problem aims to familiarize us with **vector equations**, **linear independence of a vector,** and **echelon form.** The concepts required to solve this problem are related to basic matrices, which include **linear independence, augmented vectors,** and **row-reduced forms.**

To define **linear independency** or **dependency,** let’s say we have a set of **vectors:**

\[ \{ v_1 , v_2 ,…, v_k \} \]

For these **vectors** to be **linearly dependent,** the following **vector equation:**

\[ x_1v_1 + x_2v_2 + Â·Â·Â· + x_kv_k = 0 \]

should only have the **trivial solution** $x_1 = x_2 = … = x_k = 0$ .

Hence, the **vectors** in the set $\{ v_1 , v_2 ,…, v_k \}$ areÂ **linearly dependent.**

## Expert Answer

The first step is to write the **polynomials** in the **standard vector form:**

\[ 1 + 2t^3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} \]

\[ 2 + t – 3t^2 = \begin{pmatrix} 2 \\ 1 \\ -3 \\ 0 \end{pmatrix} \]

\[ -t + 2t^2 – t^3 = \begin{pmatrix} 0 \\ -1 \\ 2 \\ -1 \end{pmatrix} \]

The next step is to form an **augmented matrix** $M$:

\[ M = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -3 & 2 & 0 \\ 2 & 0 & -1 & 0 \end{bmatrix} \]

**Performing** a **row operation** on $R_4$, $\{ R_4 = R_4\space -\space 2R_1 \}$:

\[ M = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -3 & 2 & 0 \\ 0 & -4 & -1 & 0 \end{bmatrix} \]

**Next,** $\{ R_3 = R_3 + 3R_2 \}$:

\[ M = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -4 & -1 & 0 \end{bmatrix} \]

**Next,** $\{ R_4 = R_4 + 4R_2 \}$:

\[ M = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -5 & 0 \end{bmatrix} \]

**Finally,** $\{ -1R_3 \}$ and $\{R_4 = R_4 + 5R_3 \}$:

\[M=\begin{bmatrix}1&2&0&0\\0&1&-1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

From the above **matrix** $M$, we can see that there are $3$ **variables** and $3$ **equations.** Hence, $1 + 2t^3, 2 + t – 3t^2, -t + 2t^2 – t^3 $ are **linearly independent.**

## Numerical Result

The **vector set** $1 + 2t^3, 2 + t – 3t^2, -t + 2t^2 – t^3 $ is **linearly independent.**

## Example

Is the **set:**

\[ \begin{Bmatrix} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} & \begin{pmatrix}1 \\-1\\2\end{pmatrix}&\begin{pmatrix}3\\1\\4\end{pmatrix}\end{Bmatrix}\]

**linearly independent?**

The **augmented matrix** of the above **set** is:

\[M=\begin{bmatrix}1&1&3\\1&-1 &1\\-2& 2 &4\end{bmatrix}\]

**Row reducing** the **matrix** gives us:

\[M=\begin{bmatrix}1&0 &0\\0&1 &0\\0&0 &1\end{bmatrix}\]

Hence, the set is **linearly independent.**