Compute the following binomial probabilities directly from the formula for b(x, n, p).

Compute The Following Binomial Probabilities Directly From The Formula For BX N P.

  1. b( 3, 8, 0.6 )
  2. b( 5, 8, 0.6 )
  3. P( 3 X 5 ) when n = 8 and p = 0.6

The aim of this question is to use the binomial random variable and its probability mass function to find probability values.

The binomial probability mass function is mathematically defined as:

P( X = x ) = b( x, n, p ) = (nx) px ( 1  p )nx

Expert Answer

Part (a) – b( 3, 8, 0.6 )

b( 3, 8, 0.6 ) = (83) (0.6)3 ( 1  0.6 )83

b( 3, 8, 0.6 ) = 8!3! (83)! (0.6)3 ( 0.4 )5

b( 3, 8, 0.6 ) = 8!3! 5! (0.6)3 (0.4)5

b( 5, 8, 0.6 ) = (56) (0.6)3 (0.4)5

b( 3, 8, 0.6 ) = 0.1238

– b( 5, 8, 0.6 )

b( 5, 8, 0.6 ) = (85) (0.6)5 ( 1  0.6 )85

b( 5, 8, 0.6 ) = 8!5! (85)! (0.6)5 ( 0.4 )3

b( 5, 8, 0.6 ) = 8!5! 3! (0.6)3 (0.4)5

b( 5, 8, 0.6 ) = (56) (0.6)5 (0.4)3

b( 5, 8, 0.6 ) = 0.2787

– P( 3 X 5 ) when n = 8 and p = 0.6

Using same approach as part (a) and (b):

P( X = 4 ) = b( 4, 8, 0.6 ) = 0.2322

Since:

P( 3X5 ) = P( X = 3 ) + P( X = 4 ) + P( X = 5 )

P( 3X5 ) = 0.1238 + 0.2322 + 0.2787

Numerical Result

b( 3, 8, 0.6 ) = 0.1238

b( 5, 8, 0.6 ) = 0.2787

P( 3 X 5 ) = 0.6347

Example

Find the probability P( 1 X ) where X is a random variable with n = 12 and p = 0.1

Using same approach as part (a) and (b):

P( X = 0 ) = b( 0, 12, 0.1 ) = 0.2824

Since:

P( 1X ) = 1  P( X1 ) = 1  P( X = 0 )

P( 1X ) = 1  0.2824 = 0.7176

Previous Question < > Next Question