Evaluate the double integral y^2 dA, D is the triangular region with vertices (0, 1), (1,2), (4,1)

D Is The Triangular Region With Vertices 0 1 1 2 4 1

This article aims to find the double integral of the triangular region with vertices. This article uses the concept of double integration. The definite integral of a positive function of one variable represents the area of the region between graph of the function and the $x-axis$. Similarly, the double integral of a positive function of two variables represents the volume of the region between the defined surface function (on the three-dimensional Cartesian plane, where $z = f(x, y)$ ) and the plane that contains its domain.

Expert Answer

The points are:

\[P (0,1) , Q(1,2) \: and \: R(4,1)\]

The equation of line between $P$ and $R$ is given as:

\[y = 1\]

The equation of line between $P$ and $Q$ is given as:

Slope-intercept equation is given as:

\[ y = mx +c\]

The slope is:

\[m_{1} = \dfrac{2-1}{1-0} =1  \]

\[m_{1} = 1\]

and the line is passing over the point:

\[x = 0\: , y = 1\]

\[1  = 0+ b\]

\[b = 1\]

\[y = x+1\]

\[x = y-1\]

The equation for the line between $ Q $ and $ R$ is:

\[m_{2} = \dfrac{(1-2)}{(4-1)}  = -\dfrac{1}{3} \]

\[y = (-\dfrac{1}{3}) \times x +b\]

\[x =1 , y =2\]

\[2 = (-\dfrac{1}{3}) \times 1+ b \]

\[b = \dfrac{7}{3}\]

\[y = -(\dfrac{x}{3})+ \dfrac{7}{3}\]

\[x = 7 -3y \]

The double integral becomes:

\[A = \int \int y^{2} dx dy\]

\[A = \int  y^{2} dy\int dx \]

\[A = \int  y^{2} dy\int dx \]

\[A = \int_{1}^{2} y^{2} dy \times x |_{(y-1)}^{(7-3y)} \]

\[A = \int_{1}^{2} y^{2} dy \times (7-3y) – (y-1) \]

\[A = \int_{1}^{2} y^{2} dy \times (8-4y )\]

\[A = \int_{1}^{2}  (8 y^{2} -4y^{3}) dy\]

\[= (\dfrac{8}{3} y^{3} – y^{4}) |_{1}^{2}\]

\[= \dfrac{56}{3} -15 \]

\[A = \dfrac{11}{3}\]

Numerical Result

The solution is $ A = \dfrac{11}{3}\: square\:units $.

Example

Evaluate the double integral. $4 y^{2}\: dA$, $D$ is a triangular region with vertices $(0, 1), (1, 2), (4, 1)$.

Solution

The points are:

\[P (0,1) , Q(1,2) \: and \: R(4,1)\]

The equation of line between $P$ and $R$ is given as:

\[y = 1\]

The equation of line between $P$ and $Q$ is given as:

Slope-intercept equation is given as:

\[ y = mx +c\]

The slope is:

\[m_{1} = \dfrac{2-1}{1-0} =1  \]

\[m_{1} = 1\]

and the line is passing over the point:

\[x = 0\: , y = 1\]

\[1  = 0+ b\]

\[b = 1\]

\[y = x+1\]

\[x = y-1\]

The equation for the line between $ Q $ and $ R$ is:

\[m_{2} = \dfrac{(1-2)}{(4-1)}  = -\dfrac{1}{3} \]

\[y = (-\dfrac{1}{3}) \times x +b\]

\[x =1 , y =2\]

\[2 = (-\dfrac{1}{3}) \times 1+ b \]

\[b = \dfrac{7}{3}\]

\[y = -(\dfrac{x}{3})+ \dfrac{7}{3}\]

\[x = 7 -3y \]

The double integral becomes:

\[A = 4\int \int y^{2} dx dy\]

\[A = 4\int  y^{2} dy\int dx \]

\[A = 4\int  y^{2} dy\int dx \]

\[A = 4\int_{1}^{2} y^{2} dy \times x |_{(y-1)}^{(7-3y)} \]

\[A = 4\int_{1}^{2} y^{2} dy \times (7-3y) – (y-1) \]

\[A = 4\int_{1}^{2} y^{2} dy \times (8-4y )\]

\[A = 4\int_{1}^{2}  (8 y^{2} -4y^{3}) dy\]

\[= 4(\dfrac{8}{3} y^{3} – y^{4}) |_{1}^{2}\]

\[=4(\dfrac{56}{3} -15) \]

\[A = 4(\dfrac{11}{3})\]

\[A = \dfrac{44}{3}\]

The solution is $ A = \dfrac{44}{3}\: square\:units $.

Previous Question < > Next Question