Find the rate of change of f at p in the direction of the vector u.

find the rate of change of f at p in the direction of the vector u

f(x,y,z)=y2exyz,P(0,1,1),u=<313,413,1213>

This question aims to find the rate of change or gradient and projections of vector spaces onto a given vector.

Gradient of a vector can be found using following formula:

f(x,y,z)=(fx(x,y,z),fy(x,y,z),fz(x,y,z))

Projection of a vector space can be found using dot product formula:

Duf(x,y,z)=f(x,y,z)u

To solve the question, we will use the following steps:

  1. Find partial derivatives.
  2. Find the gradient.
  3. Find the projection of gradient in the direction of the vector u.

Expert Answer

Calculating partial derivative w.r.t x:

fx(x,y,z)=x(y2exyz)=y2exyz(yz)=y3zexyz

Calculating partial derivative w.r.t y:

fy(x,y,z)=y(y2exyz)

fy(x,y,z)=y(y2)exyz+y2y(exyz)

fy(x,y,z)=2y2exyz+y2exyz(xz)

fy(x,y,z)=2y2exyz+xy2zexyz

Calculating partial derivative w.r.t z:

fz(x,y,z)=z(y2exyz)=y2exyz(xy)=xy3exyz

Evaluating all partial derivatives at the given point P,

fx(0,1,1)=(1)3(1)e(0)(1)(1)=1

fy(0,1,1)=2(1)2e(0)(1)(1)+(0)(1)2(1)e(0)(1)(1)=2

fz(0,1,1)=(0)(1)3e(0)(1)(1)=0

Calculating the gradient of f at point P:

f(x,y,z)=(fx(x,y,z),fy(x,y,z),fz(x,y,z))

f(0,1,1)=(fx(0,1,1),fy(0,1,1),fz(0,1,1))

f(0,1,1)=<1,2,0>

Calculating the rate of change in the direction of u:

Duf(x,y,z)=f(x,y,z)u

Duf(0,1,1)=f(0,1,1)<313,413,1213>

Duf(0,1,1)=<1,2,0><313,413,1213>

Duf(0,1,1)=1(313)+2(413)+0(1213)

Duf(0,1,1)=1(3)+2(4)+0(12)13

Duf(0,1,1)=3+8+013=513

Numerical Answer

The rate of change is calculated to be:

Duf(0,1,1)=513

Example

We have the following vectors and we need to calculate the rate of change.

f(x,y,z)=y2exyz,P(0,1,1),u=<133,533,733>

Here, partial derivatives and the gradient values remain same, So:

fx(x,y,z)=y3zexyz

fy(x,y,z)=2y2exyz+xy2zexyz

fz(x,y,z)=xy3exyz

fx(0,1,1)=1

fy(0,1,1)=2

fz(0,1,1)=0

f(0,1,1)=<1,2,0>

Calculating the rate of change in the direction of u:

Duf(x,y,z)=f(x,y,z)u

Duf(0,1,1)=f(0,1,1)<313,413,1213>

Duf(0,1,1)=<1,2,0><133,533,733>

Duf(0,1,1)=1(133)+2(533)+0(733)

Duf(0,1,1)=1(1)+2(5)+0(7)33=1+10+033=533

Previous Question < > Next Question