The main objective of this question is to find the three angles of a triangle given three vertices. The angles can be found using the dot product of the vectors representing the sides of the triangle.
A triangle is a polygon with three-sides that is also referred to as a trigon. Every triangle possesses $3$ sides and $3$ angles, which may or may not be the same. Triangles are classified as acute, equilateral, isosceles, obtuse, isosceles right, and right triangle.
A triangle is formed geometrically by the intersection of three line segments. In each triangle, every side has $2$ endpoints, and the endpoints of all three sides may intersect at three different points in a plane to form a triangle. The three intersecting points are referred to as triangle vertices. The angles inside a triangle are referred to as the interior angles and the sum of three angles of the triangle is always equal to $180^\circ$. Any triangle that is not a right triangle is defined as an oblique triangle.
Expert Answer
Given vertices are:
$A(1, 0, -1), B(3, -2, 0), C(1, 3, 3)$
First, find the vectors representing the sides of the triangle.
$\overrightarrow{AB}=\langle 3-1,-2-0,0+1\rangle$ $=\langle 2,-2,1\rangle$
$\overrightarrow{AC}=\langle 1-1, 3-0,3+1\rangle$ $=\langle 0,3,4\rangle$
$\overrightarrow{BC}=\langle 1-3, 3+2,3-0\rangle$ $=\langle -2,5,3\rangle$
The magnitudes of the sides of triangle are:
$|\overrightarrow{AB}|=\sqrt{(2)^2+(-2)^2+(1)^2}$ $=3$
$|\overrightarrow{AC}|=\sqrt{(0)^2+(3)^2+(4)^2}$ $=5$
$|\overrightarrow{BC}|=\sqrt{(-2)^2+(5)^2+(3)^2}$ $=\sqrt{38}$
Let $\alpha$ be the angle between $\overrightarrow{AB}$ and $\overrightarrow{AC}$, then by using the dot product:
$\cos \alpha=\dfrac{\overrightarrow{AB}\cdot\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$
$\cos \alpha=\dfrac{(2)(0)+(-2)(2)+(1)(4)}{(3)(5)}$
$\cos \alpha=\dfrac{0-4+4}{15}=$ $-\dfrac{2}{15}$
$\alpha=\cos^{-1}\left(-\dfrac{2}{15}\right)$
$\alpha=97.67^\circ$
Let $\beta$ be the angle between $\overrightarrow{AB}$ and $\overrightarrow{BC}$, then by using the dot product:
$\cos \beta=\dfrac{\overrightarrow{AB}\cdot\overrightarrow{BC}}{|\overrightarrow{AB}||\overrightarrow{BC}|}$
$\cos \beta=\dfrac{(2)(-2)+(-2)(5)+(1)(3)}{(3)(\sqrt{38})}$
$\cos \beta=\dfrac{-4-10+3}{3\sqrt{38}}=$ $-\dfrac{11}{3\sqrt{38}}$
$\beta=\cos^{-1}\left(-\dfrac{11}{3\sqrt{38}}\right)$
$\beta=126.5^\circ$
This is the angle outside the triangle because the direction $\overrightarrow{BC}$ is pointing relative to $\overrightarrow{AB}$, and so, we should find the supplementary angle that is:
$\beta=180^\circ-126.5^\circ$ $=53.5^\circ$
Let $\gamma$ be the angle between $\overrightarrow{AC}$ and $\overrightarrow{BC}$. Since the sum of the angles of a triangle is $180^\circ$, so:
$\alpha+\beta+\gamma=180^\circ$
$97.67^\circ+53.5^\circ+\gamma=180^\circ$
$151.17^\circ+\gamma=180^\circ$
$\gamma=180^\circ-151.17^\circ$
$\gamma=28.83^\circ$
Example
Given the vertices $a(0,0),b(1,2),c(-1,4)$, solve for the three angles of a triangle.
Solution
Given vertices are:
$a(0,0),b(1,2),c(-1,4)$
First, find the vectors representing the sides of the triangle.
$\overrightarrow{ab}=\langle 1-0,2-0\rangle$ $=\langle 1,2\rangle$
$\overrightarrow{ca}=\langle -1-0, 4-0\rangle$ $=\langle -1,4\rangle$
$\overrightarrow{bc}=\langle -1-1, 4-2\rangle$ $=\langle -2,2\rangle$
The magnitudes of the sides of triangle are:
$|\overrightarrow{ab}|=\sqrt{(1)^2+(2)^2}$ $=\sqrt{5}$
$|\overrightarrow{ca}|=\sqrt{(-1)^2+(4)^2}$ $=\sqrt{17}$
$|\overrightarrow{bc}|=\sqrt{(-2)^2+(2)^2}$ $=2\sqrt{2}$
Let $\alpha$ be the angle between $\overrightarrow{ab}$ and $\overrightarrow{ca}$, then by using the dot product:
$\cos \alpha=\dfrac{\overrightarrow{ab}\cdot\overrightarrow{ca}}{|\overrightarrow{ab}||\overrightarrow{ca}|}$
$\cos \alpha=\dfrac{(1)(-1)+(4)(2)}{(\sqrt{5})(\sqrt{17})}$
$\cos \alpha=\dfrac{-1-8}{\sqrt{85}}=$ $-\dfrac{9}{\sqrt{85}}$
$\alpha=\cos^{-1}\left(-\dfrac{9}{\sqrt{85}}\right)$
$\alpha=12.53^\circ$
Let $\beta$ be the angle between $\overrightarrow{ab}$ and $\overrightarrow{bc}$, then by using the dot product:
$\cos \beta=\dfrac{\overrightarrow{ab}\cdot\overrightarrow{bc}}{|\overrightarrow{ab}||\overrightarrow{bc}|}$
$\cos \beta=\dfrac{(1)(-2)+(2)(2)}{(\sqrt{5})(\sqrt{2})}$
$\cos \beta=\dfrac{-2+4}{\sqrt{10}}=$ $\dfrac{2}{\sqrt{10}}$
$\beta=\cos^{-1}\left(\dfrac{2}{\sqrt{10}}\right)$
$\beta=50.77^\circ$
Let $\gamma$ be the angle between $\overrightarrow{ca}$ and $\overrightarrow{bc}$. Since the sum of the angles of a triangle is $180^\circ$, so:
$\alpha+\beta+\gamma=180^\circ$
$12.53^\circ+50.77^\circ+\gamma=180^\circ$
$63.3^\circ+\gamma=180^\circ$
$\gamma=180^\circ-63.3^\circ$
$\gamma=116.7^\circ$
Images/mathematical drawings are created with GeoGebra.