An airplane flies at an altitude of 5 miles toward a point directly over an observer.

An Airplane Flies At An Altitude Of 5 Miles Toward A Point D

  • An airplane having a speed of 600 miles per hour is flying at an altitude of 5 miles in the direction of an observer as per the figure. What will be the rate at which the angle of elevation is changing when the angle of observation θ is:

a) θ=30°

b) θ=75°

Angle of Elevation

As we know, if an object moves horizontally at a certain and constant height with reference to a base point, the angle of the object with respect to the baseline continuously changes. If the object is moving away from the observation point, the angle decreases. If the object is moving towards the observation point, the angle increases.

Expert Answer

Given as:

Altitude of airplane y=5mi

Horizontal distance of the observer = x

Speed of the plane = 600 mih as it is towards the observer.

Using trigonometric equation:

tanθ=yx

By substituting the given values:

tanθ= 5 mix

As speed is defined as rate of change of distance dxdt, so

dxdt= 600 mih

Taking derivative of tanθ= 5 mix  with respect to time t.

ddt ( tanθ= 5 mix )

We get,

sec2(θ)  (dθ)dt= 5 mix2 × dxdt 

dθdt = 5 misec2(θ) × x2 × dxdt  

dθdt = 5 mi × cos2(θ)  x2  × ( 600 mih )

Now solving tanθ= 5 mix for x

tanθ=5 mix

x =5 mitanθ

Putting the value of x

dθdt = 5 mi × cos2(θ)  ( 5 mitanθ  )2  × ( 600 mih  )

dθdt = 5 mi × cos2(θ) (25 mi2) ( 1tanθ  )2  × ( 600 mih  )

Simplifying the equation and cancelling mi2,

dθdt = 1 × cos2(θ) 5  ( 1tanθ  )2  × ( 600 h1  )

As 1tanθ =cotθ

dθdt = 1 × cos2(θ) 5  ( cotθ  )2  ×  (600 h1  )

dθdt = 120   cos2(θ)   ( cotθ  )2  h1  

As cotθ = cosθsinθ

dθdt = 120   cos2(θ)   ( cotθ  )2  h1  

dθdt = 120 ×sin2( θ )  h1  

Numerical Results

a) For θ = 30°

dθdt = 120 ×sin2( 30° )  h1  

dθdt = 30°h

b) For θ = 75°

dθdt = 120 ×sin2( 75 )  h1  

dθdt = 111.96°h

Example:

For the above question, find the rate at which the angle θ is changing when the angle is π4, altitude 4 miles and speed 400 miles per hour.

tanθ= 4 mix

dθdt = 4 mi × cos2(θ)  ( 4 mitanθ  )2  × ( 400 mih  )

dθdt = 100 ×sin2( θ )  h1  

dθdt = 100 ×sin2( π4 )  h1  

dθdt = 50°h

Image/Mathematical drawings are created in Geogebra.

Previous Question < > Next Question