Resolve the force F2 into components acting along the u and v axes and determine the magnitudes of the components.

Determine The Directions Of The Force F1 Components Acting Along The U And V

The main objective of this question is to resolve the given vector into its component and determine its magnitude.

This question uses the concept of Vector resolution. A vector resolution is the breaking of such a single vector into several vectors in various directions that collectively generate the same effect as a single vector. Component vectors are the vectors created following splitting.

Expert Answer

We have to resolve the given vectors into its component.

By using the sine rule, we get:

\[ \space \frac{F_2}{sin \space 70} \space = \space \frac{(F_2)_u}{sin \space 45} \space = \frac{(F_2)_v}{sin 65 } \]

Now calculating $ F_2 $ in the direction of  $ u $.

So:

\[ \space \frac{F_2}{sin \space 70 } \space = \space \frac{(F_2)_u}{sin \space 45} \]

\[ \space (F_2)_u \space = \space \frac{F_2 \space \times \space sin \space 45 } {sin \space 70} \]

By putting the value of $F_2$, we get:

\[ \space (F_2)_u \space = \space \frac{500 \space \times \space sin \space 45 } {sin \space 70} \]

By simplifying, we get:

\[ \space (F_2)_u \space = \space 376.24 \]

Now resolving in the $ v $ direction.

\[ \space \frac{F_2}{sin \space 70 } \space = \space \frac{(F_2)_v}{sin \space 65} \]

\[ \space (F_2)_v \space = \space \frac{F_2 \space \times \space sin \space 65 } {sin \space 70} \]

By putting the value of $F_2$, we get:

\[ \space (F_2)_v \space = \space \frac{500 \space \times \space sin \space 65 } {sin \space 70} \]

By simplifying, we get:

\[ \space (F_2)_u \space = \space 482.24 \space N \]

Now magnitude is calculated as:

\[ \space F_2 \space = \space \sqrt{(F_2)^2_u \space + \space (F_2)^2_v} \]

By putting values, we get:

\[ \space = \space \sqrt {(376.24)^2 \space + \space (482.24)^2 } \]

\[ \space F_2 \space = \space 611.65 \space N \]

Numerical Answer

The magnitude of $ F_2 $ resolving into components is:

\[ \space F_2 \space = \space 611.65 \space N \]

Example

In the above question, if the magnitude of $ F_2 $ is $ 1000 \space N $, find the magnitude of $F_2$ after resolving into its components $u$ and $v$.

By using the sine rule, we get:

\[ \space \frac{F_2}{sin \space 70} \space = \space \frac{(F_2)_u}{sin \space 45} \space = \frac{(F_2)_v}{sin 65 } \]

Now calculating $ F_2 $ in the direction of  $ u $.

So:

\[ \space \frac{F_2}{sin \space 70 } \space = \space \frac{(F_2)_u}{sin \space 45} \]

\[ \space (F_2)_u \space = \space \frac{F_2 \space \times \space sin \space 45 } {sin \space 70} \]

By putting the value of $F_2$, we get:

\[ \space (F_2)_u \space = \space \frac{1000 \space \times \space sin \space 45 } {sin \space 70} \]

By simplifying, we get:

\[ \space (F_2)_u \space = \space 752.48 \]

Now resolving in the $ v $ direction.

\[ \space \frac{F_2}{sin \space 70 } \space = \space \frac{(F_2)_v}{sin \space 65} \]

\[ \space (F_2)_v \space = \space \frac{F_2 \space \times \space sin \space 65 } {sin \space 70} \]

By putting the value of $F_2$, we get:

\[ \space (F_2)_v \space = \space \frac{1000 \space \times \space sin \space 65 } {sin \space 70} \]

By simplifying, we get:

\[ \space (F_2)_u \space = \space 964.47 \space N \]

Now magnitude is calculated as:

\[ \space F_2 \space = \space \sqrt{(F_2)^2_u \space + \space (F_2)^2_v} \]

By putting values, we get:

\[ \space = \space \sqrt {(752.48)^2 \space + \space (964.47)^2 } \]

\[ \space F_2 \space = \space 1223.28 \space N \]

Previous Question < > Next Question