Factors of 607: Prime Factorization, Methods, and Examples

607 is a prime number. A prime number is defined as the number having only two factors 1 and itself the number 607. 

Factors Of 607

These two are the only number when divided by 607 giving a non-decimal places integer number with 0 as the remainder.

Factors of 607

Here are the factors of number 607.

Factors of 607: 1 and 607

Negative Factors of 607

The negative factors of 607 are similar to its positive aspects, just with a negative sign.

Negative Factors of 607: -1, and -607

Prime Factorization of 607

The prime factorization of 607 is the way of expressing its prime factors in the product form.

Prime Factorization: 1 x 607

In this article, we will learn about the factors of 607 and how to find them using various techniques such as upside-down division, prime factorization, and factor tree.

What Are the Factors of 607?

The factors of 607 are 1 and 607. These numbers are the factors as they do not leave any remainder when divided by 607.

The factors of 607 are classified as prime numbers and composite numbers. The prime factors of the number 607 can be determined using the prime factorization technique.

How To Find the Factors of 607?

You can find the factors of 607 by using the rules of divisibility. The divisibility rule states that any number, when divided by any other natural number, is said to be divisible by the number if the quotient is the whole number and the resulting remainder is zero.

To find the factors of 607, create a list containing the numbers that are exactly divisible by 607 with zero remainders. One important thing to note is that 1 and 607 are the 607’s factors as every natural number has 1 and the number itself as its factor.

1 is also called the universal factor of every number. The factors of 607 are determined as follows:

\[\dfrac{607}{1} = 607\]

\[\dfrac{607}{607} = 1\]

Therefore, 1 and 607 are the factors of 607.

Total Number of Factors of 607

For 607, there are two positive factors and two negative ones. So in total, there are four factors of 607. 

To find the total number of factors of the given number, follow the procedure mentioned below:

  1. Find the factorization/prime factorization of the given number.
  2. Demonstrate the prime factorization of the number in the form of exponent form.
  3. Add 1 to each of the exponents of the prime factor.
  4. Now, multiply the resulting exponents together. This obtained product is equivalent to the total number of factors of the given number.

By following this procedure, the total number of factors of 607 is given as:

Factorization of 607 is 1 x 607.

The exponent of 1 and 607 is 1.

Adding 1 to each and multiplying them together results in 4.

Therefore, the total number of factors of 607 is four whereas two are positive, and tw0 factors are negative.

Important Notes

Here are some essential points that must be considered while finding the factors of any given number:

  • The factor of any given number must be a whole number.
  • The factors of the number cannot be in the form of decimals or fractions.
  • Factors can be positive as well as negative.
  • Negative factors are the additive inverse of the positive factors of a given number.
  • The factor of a number cannot be greater than that number.
  • Every even number has 2 as its prime factor, the smallest prime factor.

Factors of 607 by Prime Factorization

The number 607 is a prime number. Prime factorization is a valuable technique for finding the number’s prime factors and expressing the number as the product of its prime factors.prime factorization of 607

Before finding the factors of 607 using prime factorization, let us find out what prime factors are. Prime factors are the factors of any given number that are only divisible by 1 and themselves.

To start the prime factorization of 607, start dividing by its most minor prime factor. First, determine that the given number is either even or odd. If it is an even number, then 2 will be the smallest prime factor.

Continue splitting the quotient obtained until 1 is received as the quotient. The prime factorization of 607 can be expressed as:

607 = 1 x 607

Factors of 607 in Pairs

The factor pairs are the duplet of numbers that, when multiplied together, result in the factorized number. Factor pairs can be more than one depending on the total number of factors given.Factors of 607 in Pairs

For 607, the factor pairs can be found as:

1 x 607 = 607

The possible factor pairs of 607 are given as (1, 607).

All these numbers in pairs, when multiplied, give 607 as the product.

The negative factor pairs of 607 are given as:

-1 x -607 = 607

It is important to note that in negative factor pairs, the minus sign has been multiplied by the minus sign, due to which the resulting product is the original positive number. Therefore, -1, and -607 are called negative factors of 607.

The list of all the factors of 607, including positive as well as negative numbers, is given below.

Factor list of 607: 1, -1, 607, and -607

Factors of 607 Solved Examples

To better understand the concept of factors, let’s solve some examples.

Example 1

How many factors of 607 are there?


The total number of Factors of 607 is 2.

Factors of 607 are 1 and 607.

Example 2

Find the factors of 607 using prime factorization.


The prime factorization of 607 is given as:

607 $\div$ 1 = 607

607 $\div$ 607 = 1 

So the prime factorization of 607 can be written as:

1 x 607 = 607

Factors of 606|Factors List| Factors of 608