JUMP TO TOPIC
Factors of 832: Prime Factorization, Methods, and Examples
In this solution, we see the number 832 has some positive factors as well as negative factors but before that, we define factors, if the numbers which are completely divisible by the number for which we are evaluating the factor in place of dividend in this case 832 then the number used as the divisor is said to be a factor of 832.
Factors of 832
Here are the factors of number 832.
Factors of 832: 1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, and 832.
Negative Factors of 832
The negative factors of 832 are similar to its positive aspects, just with a negative sign.
Negative Factors of 832: -1, -2, -4, -8, -13, -16, -26, -32, -52, -64, -104, -208, -416, and -832.
Prime Factorization of 832
The prime factorization of 832 is the way of expressing its prime factors in the product form.
Prime Factorization: 2 × 2 × 2 × 2 × 2 × 2 × 13
In this article, we will learn about the factors of 832 and how to find them using various techniques such as upside-down division, prime factorization, and factor tree.
What Are the Factors of 832?
The factors of 832 are 1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, and 832. These numbers are the factors as they do not leave any remainder when divided by 832.
The factors of 832 are classified as prime numbers and composite numbers. The prime factors of the number 832 can be determined using the prime factorization technique.
How To Find the Factors of 832?
You can find the factors of 832 by using the rules of divisibility. The divisibility rule states that any number, when divided by any other natural number, is said to be divisible by the number if the quotient is the whole number and the resulting remainder is zero.
To find the factors of 832, create a list containing the numbers that are exactly divisible by 832 with zero remainders. One important thing to note is that 1 and 832 are the 832’s factors as every natural number has 1 and the number itself as its factor.
1 is also called the universal factor of every number. The factors of 832 are determined as follows:
\[\dfrac{832}{1} = 832\]
\[\dfrac{832}{2} = 416\]
\[\dfrac{832}{4} = 208\]
\[\dfrac{832}{8} = 104\]
\[\dfrac{832}{13} = 64\]
\[\dfrac{832}{16} = 52\]
\[\dfrac{832}{26} = 32\]
\[\dfrac{832}{32} = 26\]
\[\dfrac{832}{52} = 16\]
\[\dfrac{832}{64} = 13\]
\[\dfrac{832}{104} = 8\]
\[\dfrac{832}{208} = 4\]
\[\dfrac{832}{416} = 2\]
\[\dfrac{832}{832} = 1\]
Therefore, 1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, and 832 are the factors of 832.
Total Number of Factors of 832
For 832, there are 14 positive factors and 14 negative ones. So in total, there are 28 factors of 832.
To find the total number of factors of the given number, follow the procedure mentioned below:
- Find the factorization/prime factorization of the given number.
- Demonstrate the prime factorization of the number in the form of exponent form.
- Add 1 to each of the exponents of the prime factor.
- Now, multiply the resulting exponents together. This obtained product is equivalent to the total number of factors of the given number.
By following this procedure, the total number of factors of 832 is given as:
Factorization of 832 is 2×2×2×2×2×2×13
The exponent of 2 and 13 is 6,1.
Adding 1 to each and multiplying them together results in 14.
Therefore, the total number of factors of 832 is 28. Fourteen are positive, and fourteen factors are negative.
Important Notes
Here are some essential points that must be considered while finding the factors of any given number:
- The factor of any given number must be a whole number.
- The factors of the number cannot be in the form of decimals or fractions.
- Factors can be positive as well as negative.
- Negative factors are the additive inverse of the positive factors of a given number.
- The factor of a number cannot be greater than that number.
- Every even number has 2 as its prime factor, the smallest prime factor.
Factors of 832 by Prime Factorization
The number 832 is a composite. Prime factorization is a valuable technique for finding the number’s prime factors and expressing the number as the product of its prime factors.
Before finding the factors of 832 using prime factorization, let us find out what prime factors are. Prime factors are the factors of any given number that are only divisible by 1 and themselves.
To start the prime factorization of 832, start dividing by its most minor prime factor. First, determine that the given number is either even or odd. If it is an even number, then 2 will be the smallest prime factor.
Continue splitting the quotient obtained until 1 is received as the quotient. The prime factorization of 832 can be expressed as:
832 = 2 x 2 x 2 x 2 x 2 x 2 x 13
Factors of 832 in Pairs
The factor pairs are the duplet of numbers that, when multiplied together, result in the factorized number. Factor pairs can be more than one depending on the total number of factors given.
For 832, the factor pairs can be found as:
1 x 832 = 832
2 x 416 = 832
4 x 208 = 832
8 x 104 = 832
13 x 64 = 832
16 x 52 = 832
26 x 32 = 832
The possible factor pairs of 832 are given as (1, 832), (2, 416), (4, 208), (8, 104), (13, 64), (16, 52) and (26, 32).
All these numbers in pairs, when multiplied, give 832 as the product.
The negative factor pairs of 832 are given as:
-1 x -832 = 832
-2 x -416 = 832
-4 x -208 = 832
-8 x -104 = 832
-13 x -64 = 832
-16 x -52 = 832
-26 x -32 = 832
It is important to note that in negative factor pairs, the minus sign has been multiplied by the minus sign, due to which the resulting product is the original positive number. Therefore, 1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, 832 are called negative factors of 832.
The list of all the factors of 832, including positive as well as negative numbers, is given below.
Factor list of 832: 1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, 832 and -832
Factors of 832 Solved Examples
To better understand the concept of factors, let’s solve some examples.
Example 1
How many factors of 832 are there?
Solution
The total number of Factors of 832 is 14.
Factors of 832 are 1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, 832.
Example 2
Find the factors of 832 using prime factorization.
Solution
The prime factorization of 832 is given as:
832 $\div$ 2 = 416
416 $\div$ 2 = 208
208 $\div$ 2 = 104
104 $\div$ 2 = 52
52 $\div$ 2 = 26
26 $\div$ 2 = 13
13 $\div$ 13 = 1
So the prime factorization of 832 can be written as:
2 × 2 × 2 × 2 × 2 × 2 × 13 = 832