# What Is 11/63 as a Decimal + Solution With Free Steps

The fraction 11/63 as a decimal is equal to 0.174603174.

Proper fractions, improper fractions, and mixed fractions are the three types of Fractions. Proper fractions are those in which the numerator is less than the denominator, whereas Improper fractions are those in which the numerator is greater than the denominator. An improper fraction and a whole number combine to form a Mixed fraction.

Here, we are more interested in the division types that result in a Decimal value, as this can be expressed as a Fraction. We see fractions as a way of showing two numbers having the operation of Division between them that result in a value that lies between two Integers.

Now, we introduce the method used to solve said fraction to decimal conversion, called Long Division,Â which we will discuss in detail moving forward. So, letâ€™s go through the Solution of fraction 11/63.

## Solution

First, we convert the fraction components, i.e., the numerator and the denominator, and transform them into the division constituents, i.e., the Dividend and the Divisor, respectively.

This can be done as follows:

Dividend = 11

Divisor = 63

Now, we introduce the most important quantity in our division process: theÂ Quotient. The value represents the Solution to our division and can be expressed as having the following relationship with the Division constituents:

Quotient = Dividend $\div$ Divisor = 11 $\div$ 63

This is when we go through the Long Division solution to our problem.

Figure 1

## 11/63 Long Division Method

We start solving a problem using the Long Division Method by first taking apart the divisionâ€™s components and comparing them. As we have 11 and 63, we can see how 11 is Smaller than 63, and to solve this division, we require that 11 be Bigger than 63.

This is done by multiplying the dividend by 10 and checking whether it is bigger than the divisor or not. If so, we calculate the Multiple of the divisor closest to the dividend and subtract it from the Dividend. This produces the Remainder, which we then use as the dividend later.

Now, we begin solving for our dividend 11, which after getting multiplied by 10 becomes 110.

We take this 110 and divide it by 63; this can be done as follows:

Â 110 $\div$ 63 $\approx$ 1

Where:

63 x 1 = 63

This will lead to the generation of a Remainder equal to 110 â€“ 63 = 47. Now this means we have to repeat the process by Converting the 47 into 470 and solving for that:

470 $\div$ 63 $\approx$ 7

Where:

63 x 7 = 441

This, therefore, produces another Remainder which is equal to 470Â  â€“ 441 = 29. Now we must solve this problem to Third Decimal Place for accuracy, so we repeat the process with dividend 290.

290 $\div$ 63 $\approx$ 4

Where:

63 x 4= 252

Finally, we have a Quotient generated after combining the three pieces of it as 0.174=z, with a Remainder equal to 38.

Images/mathematical drawings are created with GeoGebra.