 # What Is 15/44 as a Decimal + Solution With Free Steps

The fraction 15/44 as a decimal is equal to 0.3409.

Recurring or repeating decimals are the ones, which have a fixed set of terms after the right of the decimal to be repeated uniformly. The fraction 15/44 is a repeating decimal fraction.

Here, we are more interested in the division types that result in a Decimal value, as this can be expressed as a Fraction. We see fractions as a way of showing two numbers having the operation of Division between them that result in a value that lies between two Integers. Now, we introduce the method used to solve said fraction to decimal conversion, called Long Division, which we will discuss in detail moving forward. So, let’s go through the Solution of fraction 15/44.

## Solution

First, we convert the fraction components, i.e., the numerator and the denominator, and transform them into the division constituents, i.e., the Dividend and the Divisor, respectively.

This can be done as follows:

Dividend = 15

Divisor = 44

Now, we introduce the most important quantity in our division process: the Quotient. The value represents the Solution to our division and can be expressed as having the following relationship with the Division constituents:

Quotient = Dividend $\div$ Divisor = 15 $\div$ 44

This is when we go through the Long Division solution to our problem. The following figure shows the solution for fraction 15/44. Figure 1

## 15/44 Long Division Method

We start solving a problem using the Long Division Method by first taking apart the division’s components and comparing them. As we have 15 and 44, we can see how 15 is Smaller than 44, and to solve this division, we require that 15 be Bigger than 44.

This is done by multiplying the dividend by 10 and checking whether it is bigger than the divisor or not. If so, we calculate the Multiple of the divisor closest to the dividend and subtract it from the Dividend. This produces the Remainder, which we then use as the dividend later.

Now, we begin solving for our dividend 15, which after getting multiplied by 10 becomes 150.

We take this 150 and divide it by 44; this can be done as follows:

150 $\div$ 44 $\approx$ 3

Where:

44 x 3 = 132

This will lead to the generation of a Remainder equal to 150 – 132 = 18. Now this means we have to repeat the process by Converting the 18 into 180 and solving for that:

180 $\div$ 44 $\approx$ 4

Where:

44 x 4 = 176

This, therefore, produces another Remainder which is equal to 180 – 176 = 4. After multiplying  4 by 10, we get 40 which is smaller than 44. That means division is not possible. So to make it bigger than 44, the 40 is again multiplied by 10 which gives us 400.

This is done by putting a zero in the quotient after the decimal point.

400 $\div$ 44 $\approx$ 9

Where:

44 x 9 = 396

Finally, we have a Quotient generated after combining the four pieces of it as 0.3409, with a Remainder equal to 4. Images/mathematical drawings are created with GeoGebra.