# What Is 3/33 as a Decimal + Solution With Free Steps

The fraction 3/33 as a decimal is equal to 0.090.

To determine the fraction’s Decimal Value, the numerator and denominator, its two elements, are divided. Because they are more simple and more straightforward to comprehend and utilize in mathematical operations than fractional values, decimal values are often preferred over fractional values.

Here, we are more interested in the division types that result in a Decimal value, as this can be expressed as a Fraction. We see fractions as a way of showing two numbers having the operation of Division between them that result in a value that lies between two Integers.

Now, we introduce the method used to solve said fraction to decimal conversion, called Long Division,Â which we will discuss in detail moving forward. So, letâ€™s go through the Solution of fraction 3/33.

## Solution

First, we convert the fraction components, i.e., the numerator and the denominator, and transform them into the division constituents, i.e., the Dividend and the Divisor, respectively.

This can be done as follows:

Dividend = 3

Divisor = 33

Now, we introduce the most important quantity in our division process: theÂ Quotient. The value represents the Solution to our division and can be expressed as having the following relationship with the Division constituents:

Quotient = Dividend $\div$ Divisor = 3 $\div$ 33

This is when we go through the Long Division solution to our problem, as depicted in figure 1.

Figure 1

## 3/33 Long Division Method

We start solving a problem using the Long Division Method by first taking apart the divisionâ€™s components and comparing them. As we have 3Â and 33, we can see how 3Â is Smaller than 33, and to solve this division, we require that 3 be Bigger than 33.

This is done by multiplying the dividend by 10 and checking whether it is bigger than the divisor or not. If so, we calculate the Multiple of the divisor closest to the dividend and subtract it from the Dividend. This produces the Remainder, which we then use as the dividend later.

Now, we begin solving for our dividend 3, which after getting multiplied by 10 becomes 30.

We take this x1 and divide it by y; this can be done as follows:

Â 30 $\div$ 33 $\approx$ 0

Where:

30 x 0 = 0

This will lead to the generation of a Remainder equal to 30 â€“ 0 = 30. Now this means we have to repeat the process by Converting the 30Â into 300Â and solving for that:

300 $\div$ 33 $\approx$ 9

Where:

33 x 9 = 297

This, therefore, produces another Remainder which is equal to 300 â€“ 297 = 3. Now we must solve this problem to Third Decimal Place for accuracy, so we repeat the process with dividend 30.

Â 30 $\div$ 33 $\approx$ 0

Where:

30 x 0 = 0

Finally, we have a Quotient generated after combining the three pieces of it as 0.090=z, with a Remainder equal to 30.

Images/mathematical drawings are created with GeoGebra.