The aim of this question is to learn how to convert simple fractions into mixed fractions.
Fractions can be subdivided into two types, proper and improper. A fraction is said to be a proper fraction if the numerator magnitude is smaller than the denominator magnitude. $ \dfrac{ 1 }{ 2 } $ is an example of a proper fraction.
An improper fraction is such a fraction whose numerator value is equal to or greater than that of the denominator. Improper fractions can be converted into mixed fractions. $ \dfrac{ 88 }{ 2 } $ is an example of a proper fraction.
A mixed fraction is a type of fraction that has a whole number part and a proper fraction part. $ 14 \ + \ \dfrac{ 1 }{ 2 } $ is an example of a proper fraction.
Expert Answer
Given the fraction:
\[ \dfrac{ 12 }{ 5 } \]
Substituting $ 12 \ = \ 10 \ + \ 2 $ in the above equation:
\[ \dfrac{ 10 \ + \ 2 }{ 5 } \]
Separating the denominator:
\[ \dfrac{ 10 }{ 5 } \ + \ \dfrac{ 2 }{ 5 } \]
Substituting $ 10 \ = \ ( 2 )( 5 ) $ in the above equation:
\[ \dfrac{ ( 2 )( 5 ) }{ 5 } \ + \ \dfrac{ 2 }{ 5 } \]
\[ 2 \times \dfrac{ 5 }{ 5 } \ + \ \dfrac{ 2 }{ 5 } \]
\[ 2 \times 1 \ + \ \dfrac{ 2 }{ 5 } \]
\[ 2 \ + \ \dfrac{ 2 }{ 5 } \]
Which can be written as:
\[ 2 \dfrac{ 2 }{ 5 } \]
Numerical Results
\[ 2 \dfrac{ 2 }{ 5 } \]
Example
Write the mixed fraction of 33/8 and 15/2.
Part (a) – Given the fraction:
\[ \dfrac{ 33 }{ 8 } \]
Substituting $ 33 \ = \ 32 \ + \ 1 $ in the above equation:
\[ \dfrac{ 32 \ + \ 1 }{ 8 } \]
Separating the denominator:
\[ \dfrac{ 32 }{ 8 } \ + \ \dfrac{ 1 }{ 8 } \]
Substituting $ 32 \ = \ ( 4 )( 8 ) $ in the above equation:
\[ \dfrac{ ( 4 )( 8 ) }{ 8 } \ + \ \dfrac{ 1 }{ 8 } \]
\[ 4 \ + \ \dfrac{ 1 }{ 8 } \]
Which can be written as:
\[ 4 \dfrac{ 1 }{ 8 } \]
Part (b) – Given the fraction:
\[ \dfrac{ 15 }{ 2 } \]
Substituting $ 15 \ = \ 14 \ + \ 1 $ in the above equation:
\[ \dfrac{ 14 \ + \ 1 }{ 2 } \]
Separating the denominator:
\[ \dfrac{ 14 }{ 2 } \ + \ \dfrac{ 1 }{ 2 } \]
Substituting $ 14 \ = \ ( 7 )( 2 ) $ in the above equation:
\[ \dfrac{ ( 7 )( 2 ) }{ 2 } \ + \ \dfrac{ 1 }{ 2 } \]
\[ 7 \ + \ \dfrac{ 1 }{ 2 } \]
Which can be written as:
\[ 7 \dfrac{ 1 }{ 2 } \]